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ABSTRACT

In this study, we construct the e�ciently computable endomorphisms

on elliptic curves with j-invariant 1728, to accelerate the computation of

ISD method. The ISD method computed scalar multiplication on elliptic

curves where it requires three endomorphisms to accomplish. However,

the original ISD method only able to solve integer multiplications since

their endomorphisms are de�ned over Z. Besides, the endomorphisms

de�ned in the original ISD method are not e�ciently computable. We

extend the study by de�ning the endomorphisms in the ISD method over

the Q(
√
−d), so that it can solve complex multiplications. Elliptic curves

with j-invariant 1728 are de�ned over Q(i), where its discriminant is given

as D = −4, with a unique maximal order. The maximal order satis�es a

polynomial of degree two, which represents the minimal polynomial for

the �rst e�ciently computable endomorphism. Meanwhile, we choose

the other two endomorphisms to belong to Q(i) as well.
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1. Introduction

E(Fp) with char(K) 6= 2, 3 is an ordinary elliptic curve E de�ned over
prime �eld, Fp, where

E : y2 = x3 +Ax+B

such that A,B ∈ Fp. The order of E, denoted as #E(Fp) is the number of
points in E(Fp) such that #E(Fp) = nh, where n is a prime number and h is
the cofactor. For cryptographic purpose, h ≤ 4. These points form a group. It
is clear that there exist a single prime subgroup of order n inside this group.

One of the most critical operation in elliptic curve cryptography (ECC) is
scalar multiplication, kP , where k ∈ [1, n] and a point, P ∈ E(Fp) with order
n. It remains to be the most dominant operation in ECC, see Park et al.
(2002). To overcome the high computational cost problem, many researchers
developed approaches such as the Gallant-Lambert-Vanstone (GLV) method
and the Integer Sub-Decomposition (ISD) method.

Gallant et al. (2001) proposed the GLV method where they decomposed
scalar k into two mini scalars; k1 and k2, which satisfy k1, k2 ≤

√
n. The

general form of GLV method given as

kP = k1P + k2Φ(P ) (1)

where Φ(P ) = λP . They highlight that λ is the roots of the minimal polyno-
mial of degree two for the endomorphism,Φ. This implies λ is an algebraic in-
teger, see Ribenboim (2001). The GLV method allows complex multiplication
since their e�ciently computable endomorphism is de�ned over the complex
quadratic �eld. The e�ciently computable endomorphism helps to accelerate
the scalar multiplication on elliptic curve via the GLV method by 50%, see Sica
et al. (2002).

However, not all scalars k can be decomposed into scalars k1, k2 ≤
√
n. As

an alternative, Ajeena and Kamarulhaili (2013) proposed the ISD method to
ful�ll the gap of GLV method. The ISD method further decomposed the GLV
scalars k1, k2 >

√
n into four di�erent scalars k1,1, k1,2, k2,1, k2,2, where each

scalars fall within
√
n, see Ajeena and Kamarulhaili (2014). The ISD method

formulation is given as

kP = k1,1P + k1,2Φ1(P ) + k2,1P + k2,2Φ2(P ) (2)

where three endomorphisms denoted by Φ,Φ1,Φ2 are needed. The ISD method
increases the percentage of successful computations as compared to the GLV
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method, however, their computational costs are expensive due to their ine�-
ciently computable endomorphisms. They used trivial endomorphisms, de�ned
by X −λ = 0, see Ajeena and Kamarulhaili (2015). As a result, they only able
to solve integer multiplications. Hence, their method unable to solve complex
multiplication on elliptic curves with j-invariant 1728.

In this paper, we extend the ISD method be de�ned over the imaginary
quadratic �eld which allows it to solve complex multiplication on elliptic curves
with j-invariant 1728. Section 2 discusses some de�nitions and essential the-
orems related to this study. Section 3 describes the e�ciently computable
endomorphisms acted on curves with j-invariant 1728 and their respective map-
ping. This section also discusses the upper and lower bound of the decomposed
scalars. Other than that, the operation counts for each of the endomorphism
are also being computed. Lastly, the last section concludes the paper.

2. Preliminaries

In this section, we give some important concepts which are used throughout
this study which can refer to Washington (2008) and Cohen (1996).

Theorem 2.1. Let E be an elliptic curve which allows complex multiplication.
Then, End(E) is isomorphic either to Z or an order in an imaginary quadratic
�eld.

De�nition 2.1. Let E : y2 = x3 +Ax+B be an ordinary elliptic curve. Then,
the only change of variables that preserves the structure of E is x = u2x′, y =
u3y′.

De�nition 2.2. Let d > 0 be a square free integer and let

K = Q(
√
−d) = a+ b

√
−d|a, b ∈ Q.

Then, K is called an imaginary quadratic �eld.

De�nition 2.3. The discriminant of quadratic �eld, D is the discriminant of
the quadratic polynomial where

D =

{
−f2d, if d ≡ 3 (mod 4)

−4f2d, if d ≡ 1, 2 (mod 4)

where d is the square free integer and f is the conductor of the ring generated
by an order in the complex or imaginary quadratic �eld,K = Q(

√
−d).
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Proposition 2.1. Let K = Q(
√
−d) with d a square free integer. Let {1,OK}

be the integral basis of K. Then, the largest subring of K denoted by OK , is
�nitely generated by an abelian group which is de�ned as

OK =

{
Z
[
1+
√
−d

2

]
, if d ≡ 3 (mod 4)

Z
[√
−d
]
, if d ≡ 1, 2 (mod 4).

3. Curves with j-invariant 1728

The elliptic curves with j-invariant 1728 are curves which have the form of
E : y2 = x3 + Ax, and it is de�ned over Fp. From Washington (2008), this
curve is ordinary only when p ≡ 1 (mod 4). This curve corresponds to unique
discriminant of the complex quadratic �eld, D = −4 that is belong to class
number one �eld, see Cohen (1996) where K = Q(i). Follow Proposition 2.1,
the maximal order for this curve is given as Z(i), which is the largest ring in
this �eld, with integral basis {1, i}. There exists a unique endomorphism that
acted on the curve which is de�ned over K = Q(i). The following proposition
describes the minimal polynomial and the mapping for the unique e�ciently
computable endomorphism acted on curves with j-invariant 1728.

Proposition 3.1. Let p ≡ 1 (mod 4) and P ∈ E(Fp) with prime order n
where E : y2 = x3 + Ax. Let β ∈ Fp be an element of order four. Then, the
endomorphism Φ satis�es Φ2 + 1 = 0, where Φ (P ) = λP . Then, the map Φ is
de�ned as

Φ : E (Fp) → E (Fp)
(x, y) 7→ (−x, βy)
O → O

is an endomorphism where β2 + 1 ≡ 0 (mod p).

Proof. An element u ∈ Fp of order four is chosen such that u4 ≡ 1 (mod p).
This implies u4 − 1 ≡ 0 (mod p) which can be reduced into
(u+ 1) (u− 1)

(
u2 + 1

)
≡ 0 (mod p), where u ≡ 1 (mod p),u ≡ −1 (mod p)

and u ≡ ±
√
−1 (mod p). Clearly, the only algebraic number is u ≡ ±

√
−1

(mod p), which satis�es a minimal polynomial of the form u2 + 1 = 0. Note
that, Z[u] ∼= OK . And from Theorem 2.1, Φ is isomorphic to and order in an
imaginary quadratic �eld, Φ ∼= u, hence Φ2 + 1 = 0 which implies λ2 + 1 = 0.
From the De�nition 2.1, the isomorphism that will preserve the equation from
E → E is given by x = u2x, y = u3y. Since u2 ≡ −1 (mod p), we then have
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Φ (x, y) =
(
u2x, u3y

)
= ((−1)x, βy)
= (−x, βy)

Supposed β ≡ u3 (mod p), this implies β4 ≡
(
u3
)4 ≡ (u4)3 ≡ 1 (mod p). Thus,

β is also an element of order four. Therefore, β satis�es the equation β2+1 ≡ 0
(mod p).

ISD method needs two more endomorphisms so that it is applies on elliptic
curve with j-invariant 1728. We choose the ring of the second endomorphism
and the third endomorphism to be the subring of the endomorphism ring for the
�rst endomorphism. The following lemma describes the existence of the other
two non-maximal orders such that they belong to the same complex quadratic
�eld as the maximal order.

Lemma 3.1. Let E : y2 = x3 + Ax de�ned over a �eld K = Q (i). Given
the �rst endomorphism as Φ2 + 1 = 0, where the maximal order is given as
OK = Z [i]. Then, there exist two other non-maximal order which is given by
Z [1− i] and Z [1 + i] which belong to the same �eld.

Proof. From Proposition 2.1, we have the maximal order for the imaginary
quadratic �eld with discriminant, D = −4 given by OK = Z [i], where its
integral basis given as {1, i} from Proposition 2.1. This ring of integer generated
by the maximal order is isomorphic to the endomorphism ring, which is an
abelian group under addition. Any algebraic integer in this abelian group can
be written as a linear combination of the basis 1 and i where z = a (1) + b (i)
with a, b ∈ Z. By letting a = 1, b = 1, we have z = 1 + i. And by letting
a = −1, b = 1, we have z = −1 + i. Both elements generated by the same
generator, i, and they are belong to the same �eld K = Q [i].

From Lemma 3.1, we have the second and third endomorphism in the second
layer of decomposition as Φ2

1 − 2Φ1 + 2 = 0 and Φ2
1 + 2Φ1 + 2 = 0 where

the endomorphism rings are isomorphic to End (E) = Z [Φ2] ∼= Z [1 + i] and
End (E) = Z [Φ2] ∼= Z [−1 + i] respectively. The following theorem describes
their respective mappings.

Theorem 3.1. Let p ≡ 1 (mod 4) and P = (x, y) be a point in E(Fp) with
prime order n where E : y2 = x3 + Ax. De�ne Φ2

1 − 2Φ1 + 2 = 0 and Φ2
2 +

2Φ2 + 2 = 0 as the second and third endomorphism respectively. Then, their
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mapping is given by

Φ1,2 (x, y) =

(
x2 +A

ε21,2x
, y

[
x2 −A
ε31,2x

2

])
where ε1,2 are the roots of the minimal polynomials for the endomorphisms.

Proof. Since E : y2 = x3 + Ax, we can have the torsion point as Q = (0, 0), a
point of order two. By using Velu's algorithm, see Galbraith (2012), we have

F (x, y) = x3 +Ax− y2 = 0

Fx = 3x2 +A

Fy = −2y

uQ = 0

vQ = (Fx (Q)) = A.

Then, the mapping for the isogeny is de�ned by φ : (x, y) = (X,Y ) where

X = x+
vQ

x− xQ
+

uQ

(x− xQ)
2

= x+
A

x

=
x2 +A

x
and

Y = y − uQ
2y + a1x+ a3

(x− xQ)
3 − vQ

a1 (x− xQ) + y − yQ
(x− xQ)

2 − a1uQ − Fx (Q)Fy (Q)

(x− xQ)
2

= y −A
( y
x2

)
= y

[
x2 −A
x2

]
.

Then the map φ : (x, y)→ (X,Y ) is a separable isogeny from E to

Ẽ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

where
A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5v,A6 = a6 −

(
a21 + 4a2

)
v − 7w.

This implies A1 = 0, A2 = 0, A30, A4 = a4− 5v = −4A,A6 = 0. Thus one have

Ẽ : y2 = x3−4Ax and φ(x, y) =
(
x2+A
x , y x

2−A
x2

)
as the isogeny E1728 → Ẽ1728.
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Since j(E) = j(Ẽ), which preserve the structure of the curve, thus E ∼= Ẽ.
And it is clear that the mapping from E to Ẽ satis�es the change of variable as
stated in De�nition 2.1, where u4 = −4 = 4(−1) which implies u2 = 2

√
−1 that

belongs to Q(−1). Thus, φ is applicable to de�ne the endomorphism mapping
de�ned over Q(−1).

Follow the concept of dual isogeny, there exist another isogeny Ẽ to E such
that it preserves the structure of the curves where (X,Y ) = (u2x, u3y) for
u ∈ K∗. By letting u = ε1,2, the roots for second and third endomorphism,
implies the mapping for the endomorphisms where Φ1,2 : (x, y) = ( X

ε21,2
, Y
ε31,2

) as

Φ1,2 (x, y) =

(
x2 +A

ε21,2x
,
y

ε31,2

[
x2 −A
x2

])

where ε1 ≡ 1 + ı (mod p) and ε2 ≡ −1 + ı (mod p).

Di�erent endomorphisms will result in di�erent lower and upper bounds.
The following theorem explains the bounds for the mini scalars in the ISD
method by using the endomorphisms de�ned earlier.

Theorem 3.2. Let E1728 : y2 = x3 + Ax de�ned over Fp such that p ≡ 1
(mod 4). There exist point P ∈ E1728 (Fp) with prime order n. Supposed that
kP = k1P +k2Φ (P ) be the the �rst layer of decomposition in ISD method such
that Φ2 +1 = 0. Then, the lower bound for k1, k2 are given as max(|k1| , |k2|) ≥√

2
√
n. And supposed that k1P = k1,1P + k1,2Φ1 (P ) and k2P = k2,1P +

k2,2Φ2 (P ) be the second decomposition layer of ISD where Φ2
1 − 2Φ1 + 2 = 0

and Φ2
2 + 2Φ2 + 2 = 0. Then, the upper bound for k1,1, k1,2, k2,1, k2,2 are given

by max(|k1,1| , |k1,2| , |k2,1| , |k2,2|) <
√

5
√
n.

Proof. Let λ and µ be the roots of Φ2 + r′Φ + s′ ≡ 0 (mod n). De�ne the
transformation T as T : (x1, x2)x 7→ x1 + x2λ (mod n) and T : (x1, x2)x 7→
x1 + x2µ (mod n). For any point P ∈ Ker (T )− {0}, one have

0 ≡ (x+ λy) (x+ µy) ≡ x2 + (λ+ µ)xy + (λµ) y2.

As the minimal polynomial for the �rst endomorphism is a polynomial of de-
gree two and any polynomial of degree two will satisfy Φ2 − (sumofroots)Φ +
(productofroots) = 0 where the sum of roots is given as λ + µ = −r′ and the
product of roots as λµ = s′, where 0 ≡ x2 + (−r′)xy + (s′) y2 (mod n). Since
Φ2 + r′Φ + s′ = 0 is irreducible in Z [Φ], then x2 + (−r′)xy + s′y2 ≥ n. And

Malaysian Journal of Mathematical Sciences 73



Antony, S.N.F.M.A. & Kamarulhaili, H.

this implies

n ≤ x2 + (−r′)xy + s′y2 ≤ x2 + |−r′|xy + s′y2

≤ max
{
x2 + |−r′|x2 + s′x2, y2 + |−r′| y2 + s′y2

}
≤ [1 + |−r′|+ s′]max

{
x2, y2

}
.

Then, max
{
x2, y2

}
≥ n

[1+|−r′|+s′] which implies max {x, y} ≥
√

n
[1+|−r′|+s′] .

Hence, one can have |v1| ≥
√

n
[1+|−r′|+s′] where |v1| = |(rm+1,−tm+1)| which

it can be either rm+1 ≥
√

n
[1+|−r′|+s′] or |tm+1| ≥

√
n

[1+|−r′|+s′] . This can be

divided into two cases:

1. rm+1 ≥
√

n
[1+|−r′|+s′] .

From Lemma 1 in Gallant et al. (2001),rm+1 |tm+2|+rm+2 |tm+1| = n im-

plies rm+1 |tm+2| < n and rm+2 |tm+1| < n. Since rm+1 ≥
√

n
[1+|−r′|+s′] ,

then |tm+2| <
√
n
√

[1 + |−r′|+ s′] and thus result |v2| = |(rm+2,−tm+2)| <√
[1 + |−r′|+ s′]n.

2. |tm+1| ≥
√

n
[1+|−r′|+s′]

From Lemma in Gallant et al. (2001), rm |tm+1| + rm+1 |tm| = n im-

plies rm |tm+1| < n and rm+2 |tm+1| < n. Since |tm+1| ≥
√

n
[1+|−r′|+s′] ,

then rm <
√
n
√

[1 + |−r′|+ s′] and thus result |v2| = |(rm,−tm)| <√
[1 + |−r′|+ s′]n.

The upper bound for k1 and k2 depend on the upper bound for generator
vectors, where the upper bound for k1 and k2 in the GLV method are given as
max {|k1| , |k2|} <

√
[1 + |−r′|+ s′]n. Since the �rst endomorphism is de�ned

as Φ2 + 1 = 0 where r′ = 0 and s′ = 1, this implies max {|k1| , |k2|} <
√

2n as
the upper bound for GLV method. Thus, the lower bound for the ISD method
is given by min {|k1| , |k2|} ≥

√
2n. By using same approach, the upper bound

for the subdecomposed scalar using the second and third endomorphism are
given as max(|k1,1| , |k1,2| , |k2,1| , |k2,2|) <

√
5
√
n.

Next, we discuss the operation counts for the e�ciently computable endo-
morphism de�ned on elliptic curves with j-invariant 1728. The �rst endomor-
phism is de�ned by Φ2 + 1 = 0 where it maps Φ : (x, y) 7→ (−x, βy). It su�ces
to know that Φ(P ) requires one multiplication. The following theorem explains
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the operation counts for the endomorphism's mapping de�ned in the second
layer of decomposition.

Theorem 3.3. Let p ≡ 1 (mod 4) and P ∈ E(Fp) be a prime order point
where E : y2 = x3 +Ax. Given the second and third endomorphisms' mapping

as λ1,2P =

(
x2 +A
ε21,2x

, y

[
x2 −A
ε31,2x

2

])
, such that λ1, λ2 and ε1, ε2 are the roots of

minimal polynomial for the second and third endomorphism modulo n and p
respectively. Then, the cost of computing Φ1,2P consists of one multiplication,
one squaring and two inversion operations.

Proof. The second and third endomorphisms de�ne by Φ2
1 − 2Φ1 + 2 = 0 and

Φ2
2 + 2Φ2 + 2 = 0 respectively. The cost of computing the operation counts

involve in that mapping is calculated in the table below:

Multiplication Squaring Inversion

y ·
[
x2 −A
ε31,2x

2

]
x2 x2 +A

ε21,2x

x2 −A
ε31,2x

2

1M 1S 2I

4. Conclusion

We extended the original ISD method on the imaginary quadratic �eld so
that it is applicable on elliptic curves with j-invariant 1728. Elliptic curves
with j-invariant 1728 are de�ned over a unique imaginary quadratic �eld, K =
Q(i) with discriminant, D = −4. We constructed the endomorphisms needed
to carry out the ISD method on this curves. All these endomorphisms are
de�ned over the same imaginary quadratic �eld as the curve itself. The �rst
endomorphism is given as Φ2 + 1 = 0, where its ring is isomorphic to the
largest ring of integer de�ned in this �eld, Z(i). Its mapping requires only one
multiplication. We choose the second and third endomorphism as Φ2

1−2Φ1+2 =
0 and Φ2

2 + 2Φ2 + 2 = 0, where their endomorphism rings are isomorphic to the
subrings in Z(i). The cost of computing the second and third endomorphism
mapping is one multiplication, one squaring and two inversions, regardless of
how large the �eld might be. Instead of using repeated doublings and additions,
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the existence of e�ciently computable endomorphisms will reduce the cost of
computing scalar multiplication kP .
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